Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

New fat-tail normality test based on conditional second moments with applications to finance (1811.05464v4)

Published 13 Nov 2018 in q-fin.ST

Abstract: In this paper we introduce an efficient fat-tail measurement framework that is based on the conditional second moments. We construct a goodness-of-fit statistic that has a direct interpretation and can be used to assess the impact of fat-tails on central data conditional dispersion. Next, we show how to use this framework to construct a powerful normality test. In particular, we compare our methodology to various popular normality tests, including the Jarque--Bera test that is based on third and fourth moments, and show that in many cases our framework outperforms all others, both on simulated and market stock data. Finally, we derive asymptotic distributions for conditional mean and variance estimators, and use this to show asymptotic normality of the proposed test statistic.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.