Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adversarially-Trained Normalized Noisy-Feature Auto-Encoder for Text Generation (1811.04201v1)

Published 10 Nov 2018 in cs.CL and cs.LG

Abstract: This article proposes Adversarially-Trained Normalized Noisy-Feature Auto-Encoder (ATNNFAE) for byte-level text generation. An ATNNFAE consists of an auto-encoder where the internal code is normalized on the unit sphere and corrupted by additive noise. Simultaneously, a replica of the decoder (sharing the same parameters as the AE decoder) is used as the generator and fed with random latent vectors. An adversarial discriminator is trained to distinguish training samples reconstructed from the AE from samples produced through the random-input generator, making the entire generator-discriminator path differentiable for discrete data like text. The combined effect of noise injection in the code and shared weights between the decoder and the generator can prevent the mode collapsing phenomenon commonly observed in GANs. Since perplexity cannot be applied to non-sequential text generation, we propose a new evaluation method using the total variance distance between frequencies of hash-coded byte-level n-grams (NGTVD). NGTVD is a single benchmark that can characterize both the quality and the diversity of the generated texts. Experiments are offered in 6 large-scale datasets in Arabic, Chinese and English, with comparisons against n-gram baselines and recurrent neural networks (RNNs). Ablation study on both the noise level and the discriminator is performed. We find that RNNs have trouble competing with the n-gram baselines, and the ATNNFAE results are generally competitive.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube