2000 character limit reached
Hermitian $K$-theory, Dedekind $ζ$-functions, and quadratic forms over rings of integers in number fields (1811.03940v1)
Published 9 Nov 2018 in math.KT and math.AT
Abstract: We employ the slice spectral sequence, the motivic Steenrod algebra, and Voevodsky's solutions of the Milnor and Bloch-Kato conjectures to calculate the hermitian $K$-groups of rings of integers in number fields. Moreover, we relate the orders of these groups to special values of Dedekind $\zeta$-functions for totally real abelian number fields. Our methods apply more readily to the examples of algebraic $K$-theory and higher Witt-theory, and give a complete set of invariants for quadratic forms over rings of integers in number fields.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.