Papers
Topics
Authors
Recent
2000 character limit reached

Alpha-Integration Pooling for Convolutional Neural Networks

Published 8 Nov 2018 in cs.LG and stat.ML | (1811.03436v4)

Abstract: Convolutional neural networks (CNNs) have achieved remarkable performance in many applications, especially in image recognition tasks. As a crucial component of CNNs, sub-sampling plays an important role for efficient training or invariance property, and max-pooling and arithmetic average-pooling are commonly used sub-sampling methods. In addition to the two pooling methods, however, there could be many other pooling types, such as geometric average, harmonic average, and so on. Since it is not easy for algorithms to find the best pooling method, usually the pooling types are assumed a priority, which might not be optimal for different tasks. In line with the deep learning philosophy, the type of pooling can be driven by data for a given task. In this paper, we propose {\it $\alpha$-integration pooling} ($\alpha$I-pooling), which has a trainable parameter $\alpha$ to find the type of pooling. $\alpha$I-pooling is a general pooling method including max-pooling and arithmetic average-pooling as a special case, depending on the parameter $\alpha$. Experiments show that $\alpha$I-pooling outperforms other pooling methods including max-pooling, in image recognition tasks. Also, it turns out that each layer has different optimal pooling type.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.