At a Glance: Pixel Approximate Entropy as a Measure of Line Chart Complexity
Abstract: When inspecting information visualizations under time critical settings, such as emergency response or monitoring the heart rate in a surgery room, the user only has a small amount of time to view the visualization "at a glance". In these settings, it is important to provide a quantitative measure of the visualization to understand whether or not the visualization is too "complex" to accurately judge at a glance. This paper proposes Pixel Approximate Entropy (PAE), which adapts the approximate entropy statistical measure commonly used to quantify regularity and unpredictability in time-series data, as a measure of visual complexity for line charts. We show that PAE is correlated with user-perceived chart complexity, and that increased chart PAE correlates with reduced judgement accuracy. We also find that the correlation between PAE values and participants' judgment increases when the user has less time to examine the line charts.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.