Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Simulation-based inference methods for partially observed Markov model via the R package is2 (1811.02963v1)

Published 7 Nov 2018 in stat.CO

Abstract: Partially observed Markov process (POMP) models are powerful tools for time series modeling and analysis. Inherited the flexible framework of R package pomp, the is2 package extends some useful Monte Carlo statistical methodologies to improve on convergence rates. A variety of efficient statistical methods for POMP models have been developed including fixed lag smoothing, second-order iterated smoothing, momentum iterated filtering, average iterated filtering, accelerate iterated filtering and particle iterated filtering. In this paper, we show the utility of these methodologies based on two toy problems. We also demonstrate the potential of some methods in a more complex model, employing a nonlinear epidemiological model with a discrete population, seasonality, and extra-demographic stochasticity. We discuss the extension beyond POMP models and the development of additional methods within the framework provided by is2.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.