Papers
Topics
Authors
Recent
2000 character limit reached

Least squares moment identification of binary regression mixtures models (1811.01714v2)

Published 5 Nov 2018 in math.ST and stat.TH

Abstract: We consider finite mixtures of generalized linear models with binary output. We prove that cross moment (between the output and the regression variables) until order 3 are sufficient to identify all parameters of the model. We propose a least-squares estimation method based on those moments and we prove the consistency and the Gaussian asymptotic behavior of the estimator. We provide simulation results and comparisons with likelihood methods. Numerical experiments were conducted using the R-package Morpheus that we developed for our least-squares moment method and with the R-package flexmix for likelihood methods. We then give some possible extensions to finite mixtures of regressions with binary output including both continuous and categorical covariates, and possibly longitudinal data.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.