Least squares moment identification of binary regression mixtures models (1811.01714v2)
Abstract: We consider finite mixtures of generalized linear models with binary output. We prove that cross moment (between the output and the regression variables) until order 3 are sufficient to identify all parameters of the model. We propose a least-squares estimation method based on those moments and we prove the consistency and the Gaussian asymptotic behavior of the estimator. We provide simulation results and comparisons with likelihood methods. Numerical experiments were conducted using the R-package Morpheus that we developed for our least-squares moment method and with the R-package flexmix for likelihood methods. We then give some possible extensions to finite mixtures of regressions with binary output including both continuous and categorical covariates, and possibly longitudinal data.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.