Intrinsic Universal Measurements of Non-linear Embeddings (1811.01464v2)
Abstract: A basic problem in machine learning is to find a mapping $f$ from a low dimensional latent space $\mathcal{Y}$ to a high dimensional observation space $\mathcal{X}$. Modern tools such as deep neural networks are capable to represent general non-linear mappings. A learner can easily find a mapping which perfectly fits all the observations. However, such a mapping is often not considered as good, because it is not simple enough and can overfit. How to define simplicity? We try to make a formal definition on the amount of information imposed by a non-linear mapping $f$. Intuitively, we measure the local discrepancy between the pullback geometry and the intrinsic geometry of the latent space. Our definition is based on information geometry and is independent of the empirical observations, nor specific parameterizations. We prove its basic properties and discuss relationships with related machine learning methods.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.