Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Understanding Deep Neural Networks Using Topological Data Analysis (1811.00852v1)

Published 31 Oct 2018 in cs.LG

Abstract: Deep neural networks (DNN) are black box algorithms. They are trained using a gradient descent back propagation technique which trains weights in each layer for the sole goal of minimizing training error. Hence, the resulting weights cannot be directly explained. Using Topological Data Analysis (TDA) we can get an insight on how the neural network is thinking, specifically by analyzing the activation values of validation images as they pass through each layer.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.