Multi-Kernel Regression with Sparsity Constraint (1811.00836v4)
Abstract: In this paper, we provide a Banach-space formulation of supervised learning with generalized total-variation (gTV) regularization. We identify the class of kernel functions that are admissible in this framework. Then, we propose a variation of supervised learning in a continuous-domain hybrid search space with gTV regularization. We show that the solution admits a multi-kernel expansion with adaptive positions. In this representation, the number of active kernels is upper-bounded by the number of data points while the gTV regularization imposes an $\ell_1$ penalty on the kernel coefficients. Finally, we illustrate numerically the outcome of our theory.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.