A Fast, Spectrally Accurate Homotopy Based Numerical Method For Solving Nonlinear Differential Equations (1811.00676v1)
Abstract: We present an algorithm for constructing numerical solutions to one--dimensional nonlinear, variable coefficient boundary value problems. This scheme is based upon applying the Homotopy Analysis Method (HAM) to decompose a nonlinear differential equation into a series of linear differential equations that can be solved using a sparse, spectrally accurate Gegenbauer discretisation. Uniquely for nonlinear methods, our scheme involves constructing a single, sparse matrix operator that is repeatedly solved in order to solve the full nonlinear problem. As such, the resulting scheme scales quasi-linearly with respect to the grid resolution. We demonstrate the accuracy, and computational scaling of this method by examining a fourth-order nonlinear variable coefficient boundary value problem by comparing the scheme to Newton-Iteration and the Spectral Homotopy Analysis Method, which is the most commonly used implementation of the HAM.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.