Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidence Estimation and Deletion Prediction Using Bidirectional Recurrent Neural Networks (1810.13025v1)

Published 30 Oct 2018 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: The standard approach to assess reliability of automatic speech transcriptions is through the use of confidence scores. If accurate, these scores provide a flexible mechanism to flag transcription errors for upstream and downstream applications. One challenging type of errors that recognisers make are deletions. These errors are not accounted for by the standard confidence estimation schemes and are hard to rectify in the upstream and downstream processing. High deletion rates are prominent in limited resource and highly mismatched training/testing conditions studied under IARPA Babel and Material programs. This paper looks at the use of bidirectional recurrent neural networks to yield confidence estimates in predicted as well as deleted words. Several simple schemes are examined for combination. To assess usefulness of this approach, the combined confidence score is examined for untranscribed data selection that favours transcriptions with lower deletion errors. Experiments are conducted using IARPA Babel/Material program languages.

Citations (32)

Summary

We haven't generated a summary for this paper yet.