Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word-level confidence estimation for RNN transducers (2110.15222v1)

Published 28 Sep 2021 in cs.CL, cs.SD, and eess.AS

Abstract: Confidence estimate is an often requested feature in applications such as medical transcription where errors can impact patient care and the confidence estimate could be used to alert medical professionals to verify potential errors in recognition. In this paper, we present a lightweight neural confidence model tailored for Automatic Speech Recognition (ASR) system with Recurrent Neural Network Transducers (RNN-T). Compared to other existing approaches, our model utilizes: (a) the time information associated with recognized words, which reduces the computational complexity, and (b) a simple and elegant trick for mapping between sub-word and word sequences. The mapping addresses the non-unique tokenization and token deletion problems while amplifying differences between confusable words. Through extensive empirical evaluations on two different long-form test sets, we demonstrate that the model achieves a performance of 0.4 Normalized Cross Entropy (NCE) and 0.05 Expected Calibration Error (ECE). It is robust across different ASR configurations, including target types (graphemes vs. morphemes), traffic conditions (streaming vs. non-streaming), and encoder types. We further discuss the importance of evaluation metrics to reflect practical applications and highlight the need for further work in improving Area Under the Curve (AUC) for Negative Precision Rate (NPV) and True Negative Rate (TNR).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mingqiu Wang (20 papers)
  2. Hagen Soltau (19 papers)
  3. Laurent El Shafey (15 papers)
  4. Izhak Shafran (30 papers)
Citations (5)