Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidence Estimation for Attention-based Sequence-to-sequence Models for Speech Recognition (2010.11428v2)

Published 22 Oct 2020 in eess.AS, cs.CL, and cs.LG

Abstract: For various speech-related tasks, confidence scores from a speech recogniser are a useful measure to assess the quality of transcriptions. In traditional hidden Markov model-based automatic speech recognition (ASR) systems, confidence scores can be reliably obtained from word posteriors in decoding lattices. However, for an ASR system with an auto-regressive decoder, such as an attention-based sequence-to-sequence model, computing word posteriors is difficult. An obvious alternative is to use the decoder softmax probability as the model confidence. In this paper, we first examine how some commonly used regularisation methods influence the softmax-based confidence scores and study the overconfident behaviour of end-to-end models. Then we propose a lightweight and effective approach named confidence estimation module (CEM) on top of an existing end-to-end ASR model. Experiments on LibriSpeech show that CEM can mitigate the overconfidence problem and can produce more reliable confidence scores with and without shallow fusion of a LLM. Further analysis shows that CEM generalises well to speech from a moderately mismatched domain and can potentially improve downstream tasks such as semi-supervised learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Qiujia Li (18 papers)
  2. David Qiu (12 papers)
  3. Yu Zhang (1400 papers)
  4. Bo Li (1107 papers)
  5. Yanzhang He (41 papers)
  6. Philip C. Woodland (50 papers)
  7. Liangliang Cao (52 papers)
  8. Trevor Strohman (38 papers)
Citations (44)
Youtube Logo Streamline Icon: https://streamlinehq.com