Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum advantage in training binary neural networks (1810.12948v2)

Published 30 Oct 2018 in quant-ph

Abstract: The performance of a neural network for a given task is largely determined by the initial calibration of the network parameters. Yet, it has been shown that the calibration, also referred to as training, is generally NP-complete. This includes networks with binary weights, an important class of networks due to their practical hardware implementations. We therefore suggest an alternative approach to training binary neural networks. It utilizes a quantum superposition of weight configurations. We show that the quantum training guarantees with high probability convergence towards the globally optimal set of network parameters. This resolves two prominent issues of classical training: (1) the vanishing gradient problem and (2) common convergence to suboptimal network parameters. Moreover we achieve a provable polynomial---sometimes exponential---speedup over classical training for certain classes of tasks. We design an explicit training algorithm and implement it in numerical simulations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.