Papers
Topics
Authors
Recent
2000 character limit reached

Embedding Geographic Locations for Modelling the Natural Environment using Flickr Tags and Structured Data

Published 12 Oct 2018 in cs.IR, cs.CL, cs.CV, cs.LG, and stat.ML | (1810.12091v1)

Abstract: Meta-data from photo-sharing websites such as Flickr can be used to obtain rich bag-of-words descriptions of geographic locations, which have proven valuable, among others, for modelling and predicting ecological features. One important insight from previous work is that the descriptions obtained from Flickr tend to be complementary to the structured information that is available from traditional scientific resources. To better integrate these two diverse sources of information, in this paper we consider a method for learning vector space embeddings of geographic locations. We show experimentally that this method improves on existing approaches, especially in cases where structured information is available.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.