Papers
Topics
Authors
Recent
2000 character limit reached

Reducing over-smoothness in speech synthesis using Generative Adversarial Networks (1810.10989v3)

Published 25 Oct 2018 in cs.SD and eess.AS

Abstract: Speech synthesis is widely used in many practical applications. In recent years, speech synthesis technology has developed rapidly. However, one of the reasons why synthetic speech is unnatural is that it often has over-smoothness. In order to improve the naturalness of synthetic speech, we first extract the mel-spectrogram of speech and convert it into a real image, then take the over-smooth mel-spectrogram image as input, and use image-to-image translation Generative Adversarial Networks(GANs) framework to generate a more realistic mel-spectrogram. Finally, the results show that this method greatly reduces the over-smoothness of synthesized speech and is more close to the mel-spectrogram of real speech.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.