Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Variational Quantum State Diagonalization (1810.10506v2)

Published 24 Oct 2018 in quant-ph

Abstract: Variational hybrid quantum-classical algorithms are promising candidates for near-term implementation on quantum computers. In these algorithms, a quantum computer evaluates the cost of a gate sequence (with speedup over classical cost evaluation), and a classical computer uses this information to adjust the parameters of the gate sequence. Here we present such an algorithm for quantum state diagonalization. State diagonalization has applications in condensed matter physics (e.g., entanglement spectroscopy) as well as in machine learning (e.g., principal component analysis). For a quantum state $\rho$ and gate sequence $U$, our cost function quantifies how far $ U\rho U{\dagger}$ is from being diagonal. We introduce novel short-depth quantum circuits to quantify our cost. Minimizing this cost returns a gate sequence that approximately diagonalizes $\rho$. One can then read out approximations of the largest eigenvalues, and the associated eigenvectors, of $\rho$. As a proof-of-principle, we implement our algorithm on Rigetti's quantum computer to diagonalize one-qubit states and on a simulator to find the entanglement spectrum of the Heisenberg model ground state.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.