Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Hierarchical Approaches for Reinforcement Learning in Parameterized Action Space (1810.09656v1)

Published 23 Oct 2018 in cs.LG, cs.AI, and stat.ML

Abstract: We explore Deep Reinforcement Learning in a parameterized action space. Specifically, we investigate how to achieve sample-efficient end-to-end training in these tasks. We propose a new compact architecture for the tasks where the parameter policy is conditioned on the output of the discrete action policy. We also propose two new methods based on the state-of-the-art algorithms Trust Region Policy Optimization (TRPO) and Stochastic Value Gradient (SVG) to train such an architecture. We demonstrate that these methods outperform the state of the art method, Parameterized Action DDPG, on test domains.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.