Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Quantum Annealing Learning Search for solving QUBO problems (1810.09342v3)

Published 22 Oct 2018 in quant-ph

Abstract: In this paper we present a novel strategy to solve optimization problems within a hybrid quantum-classical scheme based on quantum annealing, with a particular focus on QUBO problems. The proposed algorithm is based on an iterative structure where the representation of an objective function into the annealer architecture is learned and already visited solutions are penalized by a tabu-inspired search. The result is a heuristic search equipped with a learning mechanism to improve the encoding of the problem into the quantum architecture. We prove the convergence of the algorithm to a global optimum in the case of general QUBO problems. Our technique is an alternative to the direct reduction of a given optimization problem into the sparse annealer graph.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.