Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dynamical elliptic Bethe algebra, KZB eigenfunctions, and theta-polynomials

Published 21 Oct 2018 in math-ph, math.AG, math.MP, and math.QA | (1810.09001v1)

Abstract: Let $(\otimes_{j=1}nV_j)[0]$ be the zero weight subspace of a tensor product of finite-dimensional irreducible $\frak{sl}2$-modules. The dynamical elliptic Bethe algebra is a commutative algebra of differential operators acting on $(\otimes{j=1}nV_j)[0]$-valued functions on the Cartan subalgebra of $\frak{sl}_2$. The algebra is generated by values of the coefficient $S_2(x)$ of a certain differential operator $D=(d/dx)2+S_2(x)$, defined to V. Rubtsov, A. Silantyev, D. Talalaev in 2009. We express $S_2(x)$ in terms of the KZB operators introduced by G. Felder and C. Wieszerkowski in 1994. We study the eigenfunctions of the dynamical elliptic Bethe algebra by the Bethe ansatz method. Under certain assumptions we show that such Bethe eigenfunctions are in one-to-one correspondence with ordered pairs of theta-polynomials of certain degree. The correspondence between Bethe eigenfunctions and two-dimensional spaces, generated by the two theta-polynomials, is an analog of the non-dynamical non-elliptic correspondence between the eigenvectors of the $\frak{gl}_2$ Gaudin model and the two-dimensional subspaces of the vector space $\Bbb C[x]$, due to E. Mukhin, V. Tarasov, A. Varchenko. We obtain a counting result for, equivalently, certain solutions of the Bethe ansatz equation, certain fibers of the elliptic Wronski map, or ratios of theta polynomials, whose derivative is of a certain form. We give an asymptotic expansion for Bethe eigenfunctions in a certain limit, and deduce from that that the Weyl involution acting on Bethe eigenfunctions coincides with the action of an analytic involution given by the transposition of theta-polynomials in the associated ordered pair.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.