Papers
Topics
Authors
Recent
2000 character limit reached

A proof that Anderson acceleration improves the convergence rate in linearly converging fixed point methods (but not in those converging quadratically) (1810.08455v2)

Published 19 Oct 2018 in math.NA

Abstract: This paper provides the first proof that Anderson acceleration (AA) improves the convergence rate of general fixed point iterations. AA has been used for decades to speed up nonlinear solvers in many applications, however a rigorous mathematical justification of the improved convergence rate has remained lacking. The key ideas of the analysis presented here are relating the difference of consecutive iterates to residuals based on performing the inner-optimization in a Hilbert space setting, and explicitly defining the gain in the optimization stage to be the ratio of improvement over a step of the unaccelerated fixed point iteration. The main result we prove is that AA improves the convergence rate of a fixed point iteration to first order by a factor of the gain at each step. In addition to improving the convergence rate, our results indicate that AA increases the radius of convergence. Lastly, our estimate shows that while the linear convergence rate is improved, additional quadratic terms arise in the estimate, which shows why AA does not typically improve convergence in quadratically converging fixed point iterations. Results of several numerical tests are given which illustrate the theory.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.