Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dyson Brownian Motion for General $β$ and Potential at the Edge (1810.08308v1)

Published 18 Oct 2018 in math.PR

Abstract: In this paper, we compare the solutions of Dyson Brownian motion with general $\beta$ and potential $V$ and the associated McKean-Vlasov equation near the edge. Under suitable conditions on the initial data and potential $V$, we obtain the optimal rigidity estimates of particle locations near the edge for short time $t=\text{o}(1)$. Our argument uses the method of characteristics along with a careful estimate involving an equation of the edge. With the rigidity estimates as an input, we prove a central limit theorem for mesoscopic statistics near the edge which, as far as we know, have been done for the first time in this paper. Additionally, combining with \cite{LandonEdge}, our rigidity estimates are used to give a proof of the local ergodicity of Dyson Brownian motion for general $\beta$ and potential at the edge, i.e. the distribution of extreme particles converges to Tracy-Widom $\beta$ distribution in short time.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube