Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Law of Large Numbers for the empirical measure process of Generalized Dyson Brownian motion (1407.7234v2)

Published 27 Jul 2014 in math.PR

Abstract: We study the generalized Dyson Brownian motion (GDBM) of an interacting $N$-particle system with logarithmic Coulomb interaction and general potential $V$. Under reasonable condition on $V$, we prove the existence and uniqueness of strong solution to SDE for GDBM. We then prove that the family of the empirical measures of GDBM is tight on $\mathcal {C}([0,T],\mathscr{P}(\mathbb{R}))$ and all the large $N$ limits satisfy a nonlinear McKean-Vlasov equation. Inspired by previous works due to Biane and Speicher, Carrillo, McCann and Villani, we prove that the McKean-Vlasov equation is indeed the gradient flow of the Voiculescu free entropy on the Wasserstein space of probability measures over $\mathbb{R}$. Using the optimal transportation theory, we prove that if $V"\geq K$ for some constant $K\in \mathbb{R}$, the McKean-Vlasov equation has a unique weak solution. This proves the Law of Large Numbers and the propagation of chaos for the empirical measures of GDBM. Finally, we prove the longtime convergence of the McKean-Vlasov equation for $C2$-convex potentials $V$.

Summary

We haven't generated a summary for this paper yet.