Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Most general cubic-order Horndeski Lagrangian allowing for scaling solutions and the application to dark energy (1810.07957v2)

Published 18 Oct 2018 in gr-qc, astro-ph.CO, hep-ph, and hep-th

Abstract: In cubic-order Horndeski theories where a scalar field $\phi$ is coupled to nonrelativistic matter with a field-dependent coupling $Q(\phi)$, we derive the most general Lagrangian having scaling solutions on the isotropic and homogenous cosmological background. For constant $Q$ including the case of vanishing coupling, the corresponding Lagrangian reduces to the form $L=Xg_2(Y)-g_3(Y)\square \phi$, where $X=-\partial_{\mu}\phi\partial{\mu}\phi/2$ and $g_2, g_3$ are arbitrary functions of $Y=Xe{\lambda \phi}$ with constant $\lambda$. We obtain the fixed points of the scaling Lagrangian for constant $Q$ and show that the $\phi$-matter-dominated-epoch ($\phi$MDE) is present for the cubic coupling $g_3(Y)$ containing inverse power-law functions of $Y$. The stability analysis around the fixed points indicates that the $\phi$MDE can be followed by a stable critical point responsible for the cosmic acceleration. We propose a concrete dark energy model allowing for such a cosmological sequence and show that the ghost and Laplacian instabilities can be avoided even in the presence of the cubic coupling.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube