Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Flow-based Network Traffic Generation using Generative Adversarial Networks (1810.07795v1)

Published 27 Sep 2018 in cs.NI and stat.ML

Abstract: Flow-based data sets are necessary for evaluating network-based intrusion detection systems (NIDS). In this work, we propose a novel methodology for generating realistic flow-based network traffic. Our approach is based on Generative Adversarial Networks (GANs) which achieve good results for image generation. A major challenge lies in the fact that GANs can only process continuous attributes. However, flow-based data inevitably contain categorical attributes such as IP addresses or port numbers. Therefore, we propose three different preprocessing approaches for flow-based data in order to transform them into continuous values. Further, we present a new method for evaluating the generated flow-based network traffic which uses domain knowledge to define quality tests. We use the three approaches for generating flow-based network traffic based on the CIDDS-001 data set. Experiments indicate that two of the three approaches are able to generate high quality data.

Citations (158)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.