Minimizing Inputs for Strong Structural Controllability (1810.07220v2)
Abstract: The notion of strong structural controllability (s-controllability) allows for determining controllability properties of large linear time-invariant systems even when numerical values of the system parameters are not known a priori. The s-controllability guarantees controllability for all numerical realizations of the system parameters. We address the optimization problem of minimal cardinality input selection for s-controllability. Previous work shows that not only the optimization problem is NP-hard, but finding an approximate solution is also hard. We propose a randomized algorithm using the notion of zero forcing sets to obtain an optimal solution with high probability. We compare the performance of the proposed algorithm with a known heuristic [1] for synthetic random systems and five real-world networks, viz. IEEE 39-bus system, re-tweet network, protein-protein interaction network, US airport network, and a network of physicians. It is found that our algorithm performs much better than the heuristic in each of these cases.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.