Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Robust flow field reconstruction from limited measurements via sparse representation (1810.06723v2)

Published 15 Oct 2018 in physics.flu-dyn

Abstract: In many applications it is important to estimate a fluid flow field from limited and possibly corrupt measurements. Current methods in flow estimation often use least squares regression to reconstruct the flow field, finding the minimum-energy solution that is consistent with the measured data. However, this approach may be prone to overfitting and sensitive to noise. To address these challenges we instead seek a sparse representation of the data in a library of examples. Sparse representation has been widely used for image recognition and reconstruction, and it is well-suited to structured data with limited, corrupt measurements. We explore sparse representation for flow reconstruction on a variety of fluid data sets with a wide range of complexity, including vortex shedding past a cylinder at low Reynolds number, a mixing layer, and two geophysical flows. In addition, we compare several measurement strategies and consider various types of noise and corruption over a range of intensities. We find that sparse representation has considerably improved estimation accuracy and robustness to noise and corruption compared with least squares methods. We also introduce a sparse estimation procedure on local spatial patches for complex multiscale flows that preclude a global sparse representation. Based on these results, sparse representation is a promising framework for extracting useful information from complex flow fields with realistic measurements.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.