Papers
Topics
Authors
Recent
Search
2000 character limit reached

Higher Kac-Moody algebras and symmetries of holomorphic field theories

Published 15 Oct 2018 in math.QA, hep-th, math-ph, math.AG, and math.MP | (1810.06534v2)

Abstract: We introduce a higher dimensional generalization of the affine Kac-Moody algebra using the language of factorization algebras. In particular, on any complex manifold there is a factorization algebra of "currents" associated to any Lie algebra. We classify local cocycles of these current algebras, and compare them to central extensions of higher affine algebras recently proposed by Faonte-Hennion-Kapranov. A central goal of this paper is to witness higher Kac-Moody algebras as symmetries of a class of holomorphic quantum field theories. In particular, we prove a generalization of the free field realization of an affine Kac-Moody algebra and also develop the theory of q-characters for this class of algebras in terms of factorization homology. Finally, we exhibit the "large N" behavior of higher Kac-Moody algebras and their relationship to symmetries of non-commutative field theories.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.