Chebotarev density theorem in short intervals for extensions of $\mathbb{F}_q(T)$ (1810.06201v2)
Abstract: An old open problem in number theory is whether Chebotarev density theorem holds in short intervals. More precisely, given a Galois extension $E$ of $\mathbb{Q}$ with Galois group $G$, a conjugacy class $C$ in $G$ and an $1\geq \varepsilon>0$, one wants to compute the asymptotic of the number of primes $x\leq p\leq x+x{\varepsilon}$ with Frobenius conjugacy class in $E$ equal to $C$. The level of difficulty grows as $\varepsilon$ becomes smaller. Assuming the Generalized Riemann Hypothesis, one can merely reach the regime $1\geq\varepsilon>1/2$. We establish a function field analogue of Chebotarev theorem in short intervals for any $\varepsilon>0$. Our result is valid in the limit when the size of the finite field tends to $\infty$ and when the extension is tamely ramified at infinity. The methods are based on a higher dimensional explicit Chebotarev theorem, and applied in a much more general setting of arithmetic functions, which we name $G$-factorization arithmetic functions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.