2000 character limit reached
The function field Sathé-Selberg formula in arithmetic progressions and `short intervals' (1709.01963v4)
Published 6 Sep 2017 in math.NT
Abstract: We use a function field analogue of a method of Selberg to derive an asymptotic formula for the number of (square-free) monic polynomials in $\mathbb{F}_q[X]$ of degree $n$ with precisely $k$ irreducible factors, in the limit as $n$ tends to infinity. We then adapt this method to count such polynomials in arithmetic progressions and short intervals, and by making use of Weil's `Riemann hypothesis' for curves over $\mathbb{F}_q$, obtain better ranges for these formulae than are currently known for their analogues in the number field setting. Finally, we briefly discuss the regime in which $q$ tends to infinity.