Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 137 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Entropic uncertainty relations and the measurement range problem, with consequences for high-dimensional quantum key distribution (1810.05654v2)

Published 12 Oct 2018 in quant-ph

Abstract: The measurement range problem, where one cannot determine the data outside the range of the detector, limits the characterization of entanglement in high-dimensional quantum systems when employing, among other tools from information theory, the entropic uncertainty relations. Practically, the measurement range problem weakens the security of entanglement-based large-alphabet quantum key distribution (QKD) employing degrees of freedom including time-frequency or electric field quadrature. We present a modified entropic uncertainty relation that circumvents the measurement range problem under certain conditions, and apply it to well-known QKD protocols. For time-frequency QKD, although our bound is an improvement, we find that high channel loss poses a problem for its feasibility. In continuous variable QKD, we find our bound provides a quantitative way to monitor for saturation attacks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.