Papers
Topics
Authors
Recent
Search
2000 character limit reached

Large Genus Asymptotics for Siegel-Veech Constants

Published 11 Oct 2018 in math.GT, math.CO, and math.DS | (1810.05227v2)

Abstract: In this paper we consider the large genus asymptotics for two classes of Siegel-Veech constants associated with an arbitrary connected stratum $\mathcal{H} (\alpha)$ of Abelian differentials. The first is the saddle connection Siegel-Veech constant $c_{\text{sc}}{m_i, m_j} \big( \mathcal{H} (\alpha) \big)$ counting saddle connections between two distinct, fixed zeros of prescribed orders $m_i$ and $m_j$, and the second is the area Siegel-Veech constant $c_{\text{area}} \big( \mathcal{H}(\alpha) \big)$ counting maximal cylinders weighted by area. By combining a combinatorial analysis of explicit formulas of Eskin-Masur-Zorich that express these constants in terms of Masur-Veech strata volumes, with a recent result for the large genus asymptotics of these volumes, we show that $c_{\text{sc}}{m_i, m_j} \big( \mathcal{H} (\alpha) \big) = (m_i + 1) (m_j + 1) \big( 1 + o(1) \big)$ and $c_{\text{area}} \big( \mathcal{H}(\alpha) \big) = \frac{1}{2} + o(1)$, both as $|\alpha| = 2g - 2$ tends to $\infty$. The former result confirms a prediction of Zorich and the latter confirms one of Eskin-Zorich in the case of connected strata.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.