Tree normal forms for quiver representations (1810.04977v1)
Abstract: We explore methods for constructing normal forms of indecomposable quiver representations. The first part of the paper develops homological tools for recursively constructing families of indecomposable representations from indecomposables of smaller dimension vector. This is then specialized to the situation of tree modules, where the existence of a special basis simplifies computations and gives nicer normal forms. Motivated by a conjecture of Kac, we use this to construct cells of indecomposable representations as deformations of tree modules. The second part of the paper develops geometric tools for constructing cells of indecomposable representations from torus actions on moduli spaces of representations. As an application we combine these methods and construct families of indecomposables - grouped into affine spaces - which actually gives a normal form for all indecomposables of certain roots.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.