Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep Convolutional Neural Networks for Noise Detection in ECGs (1810.04122v1)

Published 5 Oct 2018 in eess.SP, cs.LG, cs.NE, and stat.ML

Abstract: Mobile electrocardiogram (ECG) recording technologies represent a promising tool to fight the ongoing epidemic of cardiovascular diseases, which are responsible for more deaths globally than any other cause. While the ability to monitor one's heart activity at any time in any place is a crucial advantage of such technologies, it is also the cause of a drawback: signal noise due to environmental factors can render the ECGs illegible. In this work, we develop convolutional neural networks (CNNs) to automatically label ECGs for noise, training them on a novel noise-annotated dataset. By reducing distraction from noisy intervals of signals, such networks have the potential to increase the accuracy of models for the detection of atrial fibrillation, long QT syndrome, and other cardiovascular conditions. Comparing several architectures, we find that a 16-layer CNN adapted from the VGG16 network which generates one prediction per second on a 10-second input performs exceptionally well on this task, with an AUC of 0.977.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.