2000 character limit reached
Subset selection in sparse matrices (1810.02757v2)
Published 5 Oct 2018 in math.OC, cs.CC, and cs.LG
Abstract: In subset selection we search for the best linear predictor that involves a small subset of variables. From a computational complexity viewpoint, subset selection is NP-hard and few classes are known to be solvable in polynomial time. Using mainly tools from discrete geometry, we show that some sparsity conditions on the original data matrix allow us to solve the problem in polynomial time.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.