Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 108 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 205 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Local Interpretable Model-agnostic Explanations of Bayesian Predictive Models via Kullback-Leibler Projections (1810.02678v1)

Published 5 Oct 2018 in cs.LG and stat.ML

Abstract: We introduce a method, KL-LIME, for explaining predictions of Bayesian predictive models by projecting the information in the predictive distribution locally to a simpler, interpretable explanation model. The proposed approach combines the recent Local Interpretable Model-agnostic Explanations (LIME) method with ideas from Bayesian projection predictive variable selection methods. The information theoretic basis helps in navigating the trade-off between explanation fidelity and complexity. We demonstrate the method in explaining MNIST digit classifications made by a Bayesian deep convolutional neural network.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.