2000 character limit reached
Smooth squarefree and square-full integers in arithmetic progressions
Published 5 Oct 2018 in math.NT | (1810.02573v2)
Abstract: We obtain new lower bounds on the number of smooth squarefree integers up to $x$ in residue classes modulo a prime $p$, relatively large compared to $x$, which in some ranges of $p$ and $x$ improve that of A. Balog and C. Pomerance (1992). We also estimate the smallest squarefull number in almost all residue classes modulo a prime $p$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.