Papers
Topics
Authors
Recent
2000 character limit reached

Quasi-Locality Bounds for Quantum Lattice Systems. Part I. Lieb-Robinson Bounds, Quasi-Local Maps, and Spectral Flow Automorphisms (1810.02428v2)

Published 4 Oct 2018 in math-ph, math.MP, and quant-ph

Abstract: Lieb-Robinson bounds show that the speed of propagation of information under the Heisenberg dynamics in a wide class of non-relativistic quantum lattice systems is essentially bounded. We review work of the past dozen years that has turned this fundamental result into a powerful tool for analyzing quantum lattice systems. We introduce a unified framework for a wide range of applications by studying quasi-locality properties of general classes of maps defined on the algebra of local observables of quantum lattice systems. We also consider a number of generalizations that include systems with an infinite-dimensional Hilbert space at each lattice site and Hamiltonians that may involve unbounded on-site contributions. These generalizations require replacing the operator norm topology with the strong operator topology in a number of basic results for the dynamics of quantum lattice systems. The main results in this paper form the basis for a detailed proof of the stability of gapped ground state phases of frustration-free models satisfying a Local Topological Quantum Order condition, which we present in a sequel to this paper.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.