Papers
Topics
Authors
Recent
Search
2000 character limit reached

Relative Saliency and Ranking: Models, Metrics, Data, and Benchmarks

Published 3 Oct 2018 in cs.CV | (1810.02426v2)

Abstract: Salient object detection is a problem that has been considered in detail and \textcolor{black}{many solutions have been proposed}. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. Initially, we present a novel deep learning solution based on a hierarchical representation of relative saliency and stage-wise refinement. Further to this, we present data, analysis and baseline benchmark results towards addressing the problem of salient object ranking. Methods for deriving suitable ranked salient object instances are presented, along with metrics suitable to measuring algorithm performance. In addition, we show how a derived dataset can be successively refined to provide cleaned results that correlate well with pristine ground truth in its characteristics and value for training and testing models. Finally, we provide a comparison among prevailing algorithms that address salient object ranking or detection to establish initial baselines providing a basis for comparison with future efforts addressing this problem. \textcolor{black}{The source code and data are publicly available via our project page:} \textrm{\href{https://ryersonvisionlab.github.io/cocosalrank.html}{ryersonvisionlab.github.io/cocosalrank}}

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.