Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Statistical learning with Lipschitz and convex loss functions (1810.01090v2)

Published 2 Oct 2018 in math.ST and stat.TH

Abstract: We obtain risk bounds for Empirical Risk Minimizers (ERM) and minmax Median-Of-Means (MOM) estimators based on loss functions that are both Lipschitz and convex. Results for the ERM are derived without assumptions on the outputs and under subgaussian assumptions on the design and a new "local Bernstein assumption" on the class of predictors. Similar results are shown for minmax MOM estimators in a close setting where the design is only supposed to satisfy moment assumptions, relaxing the Subgaussian hypothesis necessary for ERM. The analysis of minmax MOM estimators is not based on the small ball assumption (SBA) as it was the case in the first analysis of minmax MOM estimators. In particular, the basic example of non parametric statistics where the learning class is the linear span of localized bases, that does not satisfy SBA can now be handled. Finally, minmax MOM estimators are analysed in a setting where the local Bernstein condition is also dropped out. It is shown to achieve an oracle inequality with exponentially large probability under minimal assumptions insuring the existence of all objects.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.