Papers
Topics
Authors
Recent
Search
2000 character limit reached

Numerical upper bounds on growth of automata groups

Published 1 Oct 2018 in math.GR, cs.DM, and cs.FL | (1810.00544v1)

Abstract: The growth of a finitely generated group is an important geometric invariant which has been studied for decades. It can be either polynomial, for a well-understood class of groups, or exponential, for most groups studied by geometers, or intermediate, that is between polynomial and exponential. Despite recent spectacular progresses, the class of groups with intermediate growth remains largely mysterious. Many examples of such groups are constructed using Mealy automata. The aim of this paper is to give an algorithmic procedure to study the growth of such automata groups, and more precisely to provide numerical upper bounds on their exponents. Our functions retrieve known optimal bounds on the famous first Grigorchuk group. They also improve known upper bounds on other automata groups and permitted us to discover several new examples of automata groups of intermediate growth. All the algorithms described are implemented in GAP, a language dedicated to computational group theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.