Papers
Topics
Authors
Recent
Search
2000 character limit reached

Port-Hamiltonian formulation and symplectic discretization of plate models. Part II : Kirchhoff model for thin plates

Published 28 Sep 2018 in math.AP | (1809.11136v3)

Abstract: The mechanical model of a thin plate with boundary control and observation is presented as a port-Hamiltonian system (pHs), both in vectorial and tensorial forms: the Kirchhoff-Love model of a plate is described by using a Stokes-Dirac structure and this represents a novelty with respect to the existing literature. This formulation is carried out both in vectorial and tensorial forms. Thanks to tensorial calculus, this model is found to mimic the interconnection structure of its one-dimensional counterpart, i.e. the Euler-Bernoulli beam. The Partitioned Finite Element Method (PFEM) is then extended to obtain a suitable, i.e. structure-preserving, weak form. The discretization procedure, performed on the vectorial formulation, leads to a finite-dimensional port-Hamiltonian system. This part II of the companion paper extends part I, dedicated to the Mindlin model for thick plates. The thin plate model comes along with additional difficulties, because of the higher order of the differential operator under consideration.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.