Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Empirical Survival Jensen-Shannon Divergence as a Goodness-of-Fit Measure for Maximum Likelihood Estimation and Curve Fitting (1809.11052v5)

Published 28 Sep 2018 in stat.ME, physics.data-an, and q-fin.ST

Abstract: The coefficient of determination, known as $R2$, is commonly used as a goodness-of-fit criterion for fitting linear models. $R2$ is somewhat controversial when fitting nonlinear models, although it may be generalised on a case-by-case basis to deal with specific models such as the logistic model. Assume we are fitting a parametric distribution to a data set using, say, the maximum likelihood estimation method. A general approach to measure the goodness-of-fit of the fitted parameters, which is advocated herein, is to use a nonparametric measure for comparison between the empirical distribution, comprising the raw data, and the fitted model. In particular, for this purpose we put forward the Survival Jensen-Shannon divergence ($SJS$) and its empirical counterpart (${\cal E}SJS$) as a metric which is bounded, and is a natural generalisation of the Jensen-Shannon divergence. We demonstrate, via a straightforward procedure making use of the ${\cal E}SJS$, that it can be used as part of maximum likelihood estimation or curve fitting as a measure of goodness-of-fit, including the construction of a confidence interval for the fitted parametric distribution. Furthermore, we show the validity of the proposed method with simulated data, and three empirical data sets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.