Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Analysis of Daily Streamflow Complexity by Kolmogorov Measures and Lyapunov Exponent (1809.08633v1)

Published 23 Sep 2018 in physics.data-an

Abstract: Analysis of daily streamflow variability in space and time is important for water resources planning, development, and management. The natural variability of streamflow is being complicated by anthropogenic influences and climate change, which may introduce additional complexity into the phenomenological records. To address this question for daily discharge data recorded during the period 1989-2016 at twelve gauging stations on Brazos River in Texas (USA), we use a set of novel quantitative tools: Kolmogorov complexity (KC) with its derivative associated measures to assess complexity, and Lyapunov time (LT) to assess predictability. We find that all daily discharge series exhibit long memory with an increasing downflow tendency, while the randomness of the series at individual sites cannot be definitively concluded. All Kolmogorov complexity measures have relatively small values with the exception of the USGS (United States Geological Survey) 08088610 station at Graford, Texas, which exhibits the highest values of these complexity measures. This finding may be attributed to the elevated effect of human activities at Graford, and proportionally lesser effect at other stations. In addition, complexity tends to decrease downflow, meaning that larger catchments are generally less influenced by anthropogenic activity. The correction on randomness of Lyapunov time (quantifying predictability) is found to be inversely proportional to the Kolmogorov complexity, which strengthens our conclusion regarding the effect of anthropogenic activities, considering that KC and LT are distinct measures, based on rather different techniques.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube