Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Lagrangian chaos and scalar advection in stochastic fluid mechanics (1809.06484v1)

Published 18 Sep 2018 in math.AP, math.DS, math.PR, nlin.CD, and physics.flu-dyn

Abstract: We study the Lagrangian flow associated to velocity fields arising from various models of fluid mechanics subject to white-in-time, $Hs$-in-space stochastic forcing in a periodic box. We prove that in many circumstances, these flows are chaotic, that is, the top Lyapunov exponent is strictly positive. Our main results are for the Navier-Stokes equations on $\mathbb T2$ and the hyper-viscous regularized Navier-Stokes equations on $\mathbb T3$ (at arbitrary Reynolds number and hyper-viscosity parameters), subject to forcing which is non-degenerate at high frequencies. As an application, we study statistically stationary solutions to the passive scalar advection-diffusion equation driven by these velocities and subjected to random sources. The chaotic Lagrangian dynamics are used to prove a version of anomalous dissipation in the limit of vanishing diffusivity, which in turn, implies that the scalar satisfies Yaglom's law of scalar turbulence -- the analogue of the Kolmogorov 4/5 law. Key features of our study are the use of tools from ergodic theory and random dynamical systems, namely the Multiplicative Ergodic Theorem and a version of Furstenberg's Criterion, combined with hypoellipticity via Malliavin calculus and approximate control arguments.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.