General formation control for multi-agent systems with double-integrator dynamics (1809.06002v1)
Abstract: We study the general formation problem for a group of mobile agents in a plane, in which the agents are required to maintain a distribution pattern, as well as to rotate around or remain static relative to a static/moving target. The prescribed distribution pattern is a class of general formations that the distances between neighboring agents or the distances from each agent to the target do not need to be equal. Each agent is modeled as a double integrator and can merely perceive the relative information of the target and its neighbors. A distributed control law is designed using the limit-cycle based idea to solve the problem. One merit of the controller is that it can be implemented by each agent in its Frenet-Serret frame so that only local information is utilized without knowing global information. Theoretical analysis is provided of the equilibrium of the N-agent system and of the convergence of its converging part. Numerical simulations are given to show the effectiveness and performance of the proposed controller.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.