Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Combining Simulations and Real-robot Experiments for Bayesian Optimization of Bipedal Gait Stabilization (1809.05374v1)

Published 14 Sep 2018 in cs.RO

Abstract: Walking controllers often require parametrization which must be tuned according to some cost function. To estimate these parameters, simulations can be performed which are cheap but do not fully represent reality. Real-robot experiments, on the other hand, are more expensive and lead to hardware wear-off. In this paper, we propose an approach for combining simulations and real experiments to learn gait stabilization parameters. We use a Bayesian optimization method which selects the most informative points in parameter space to evaluate based on the entropy of the cost function to optimize. Experiments with the igus Humanoid Open Platform demonstrate the effectiveness of our approach.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.