Papers
Topics
Authors
Recent
2000 character limit reached

Context2Name: A Deep Learning-Based Approach to Infer Natural Variable Names from Usage Contexts

Published 31 Aug 2018 in cs.SE, cs.LG, cs.PL, and stat.ML | (1809.05193v1)

Abstract: Most of the JavaScript code deployed in the wild has been minified, a process in which identifier names are replaced with short, arbitrary and meaningless names. Minified code occupies less space, but also makes the code extremely difficult to manually inspect and understand. This paper presents Context2Name, a deep learningbased technique that partially reverses the effect of minification by predicting natural identifier names for minified names. The core idea is to predict from the usage context of a variable a name that captures the meaning of the variable. The approach combines a lightweight, token-based static analysis with an auto-encoder neural network that summarizes usage contexts and a recurrent neural network that predict natural names for a given usage context. We evaluate Context2Name with a large corpus of real-world JavaScript code and show that it successfully predicts 47.5% of all minified identifiers while taking only 2.9 milliseconds on average to predict a name. A comparison with the state-of-the-art tools JSNice and JSNaughty shows that our approach performs comparably in terms of accuracy while improving in terms of efficiency. Moreover, Context2Name complements the state-of-the-art by predicting 5.3% additional identifiers that are missed by both existing tools.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.