Papers
Topics
Authors
Recent
Search
2000 character limit reached

Privacy-preserving mHealth Data Release with Pattern Consistency

Published 12 Sep 2018 in cs.CR | (1809.04579v1)

Abstract: Mobile healthcare system integrating wearable sensing and wireless communication technologies continuously monitors the users' health status. However, the mHealth system raises a severe privacy concern as the data it collects are private information, such as heart rate and blood pressure. In this paper, we propose an efficient and privacy-preserving mHealth data release approach for the statistic data with the objectives to preserve the unique patterns in the original data bins. The proposed approach adopts the bucket partition algorithm and the differential privacy algorithm for privacy preservation. A customized bucket partition algorithm is proposed to combine the database value bins into buckets according to certain conditions and parameters such that the patterns are preserved. The differential privacy algorithm is then applied to the buckets to prevent an attacker from being able to identify the small changes at the original data. We prove that the proposed approach achieves differential privacy. We also show the accuracy of the proposed approach through extensive simulations on real data. Real experiments show that our partitioning algorithm outperforms the state-of-the-art in preserving the patterns of the original data by a factor of 1.75.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.